2 期 张群等 直径对脉冲爆震发动机性能的影响
图3 原理性试验模型装置示意图
4实验结果与分析
实验分别测量了余气系数d=1.0和a=1.2,
频率f=6 Hz的爆震波压力,爆震波速度及试验器
的摆动量,并由此计算出了比冲和平均推力。图4是
在内径d=30 n%in的试验器上,余气系数a=1.0,
频率f=6 Hz的爆震波压力波形图,从图中可见,
爆震波平均峰值压力在15 x i0 Pa左右,说明已经
形成了爆震。图5是在内径d= 56mm 的试验器
上,余气系数d=1.0,频率f=6Hz爆震渡压力波
形图,从图中可见,爆震波平均峰值压力在14 x i0
Pa左右,也已经形成了爆震 由图4、图5可以看
出,两种工况的爆震波平均峰值压力接近,爆震室
中压力分布曲线形状也是相似的,也就是说,在一
定条件下,爆震室中的流动是自相似的
表l和表2分别计算出了余气系数a=1.0,
a=1.2时的冲量,比冲和平均推力值,从表中可以
&
=
1 0 f.6 l l l
I I l l l
J I l I l
I J Lj I
厂 — r; r
【 。I
J J
l l
0 0 0 2 0.4 0 6 0 8 i.0
起点:-0 0819 s ,/s
图4 爆震波压力波形图(内径d=3 cⅡ-)
量
a=1.0 ff=6 Hz l
1 . 1 l 1 l
二=卜 二卜 一 I J 一 ,Jl
l L
l
l
f [
0.0 0 2 0.4 0 6 0 8 i.0
起点:一0.0819 s ,/s
图5 爆震波压力波形图(内径d 5.6 )
看出:在两种不同内径的试验器内,在同一余气系数
下,比冲的理论值相同,实验值也基本相等,这是因
为爆震室内的爆震燃烧具有自相似性,因而比冲只
与G—l,爆震的特性有关,而与爆震室直径无关。
从表中的实验结果也可看出,平均推力与爆震室的
容积成正比,因而当爆震室长度一定时,可以通过
增大爆震室直径来提高发动机的推力。在利用推力
壁上的压力计算比冲和推力时, 由于爆震具有随机
表1 a=1,0的比冲和平均推力值
弛¨ ¨